
An Analysis of Gray versus Binary Encoding in Genetic Search

Uday K. Chakraborty1 and Cezary Z. Janikow
Dept. of Mathematics and Computer Science

University of Missouri
St. Louis, MO 63121, USA

Abstract

This paper employs a Markov model to study the relative performance of binary and Gray coding in genetic
algorithms. The results indicate that while there is little difference between the two for all possible functions,
Gray coding does not necessarily improve performance for functions which have fewer local optima in the
Gray representation than in binary.

1 Introduction

Any parameter optimization technique, including genetic algorithms (GAs) [9], requires some method of
representing the parameters. Without loss of generality, we discuss here integer parameters. One approach
used in genetic algorithms is to code an integer parameter directly in its base-2 representation, using explicit
bits (the genotype level), and then apply a standard binary-to-integer mapping to decode the parameter value
(the phenotype level). Alternatively, one may represent the parameter using the readily available integer
data type (thus merging the genotype and phenotype levels). Among possible bit-string representations,
the Gray code is known to alleviate the ”Hamming cliff” problem. An example of a Hamming cliff is the
transition from 7 to 8 in binary coding, where all the bits (in four-bit coding) change (from 0111 to 1000)
corresponding to a change of one in the phenotype. The distance between two chromosomes, at the genotype
level, is measured by Hamming distance, which is simply the number of bits that differ. In the Gray code,
the Hamming distance is always one for any two strings (chromosomes) that are adjacent (differing by one)
at the phenotype level. That is not the case in the standard binary code where a single bit flip at the most
significant position dramatically changes the value (phenotype). There are many Gray codes [8]; in this
paper we use the binary reflected Gray code and refer to it as simply the Gray code. The algorithms for
binary-to-Gray and Gray-to-binary conversions are given below (a binary string b1, . . . , bL and a Gray string
g1, . . . , gL are considered):

procedure Binary-to-Gray
begin
g1 = b1;
for i = 2 to n do
gi = bi−1 XOR bk;

end

procedure Gray-to-Binary
begin
b1 = bitvalue = g1;
for i = 2 to n do
begin

if gi = 1 then bitvalue = COMPLEMENT(bitvalue);
bi = bitvalue;

end
end

1Corresponding author. Email: uday@cs.umsl.edu

Use of Gray coding has been shown to produce improved genetic algorithm performance in some cases
[13, 2, 19, 4]. This has led some researchers (e.g., [7]) to abandon binary coding in favor of Gray. Some
others (e.g., [12]), however, did not find Gray helpful. Most of the previous research into the binary-
versus-Gray issue in genetic algorithms have been based on (non-exhaustive) empirical studies. In this
paper, we undertake a Markov chain theory-based exhaustive numerical approach to investigate the relative
performance of the two representations. As expected, due to the no-free-lunch theorem [23], our model
indicates that for all possible functions there is little difference between the two. In [17, 22], it was argued
that Gray encoding would outperform binary encoding on the special class of functions for which the number
of local minima in the binary Hamming space is greater than the corresponding number in the Gray Hamming
space. Our results show that even though it is often the case, it is not universally true.

We also analyze the comparative performance of Gray and binary encoding for a simpler search algorithm
of the same genre, namely stochastic hillclimbing. Our Markov model for stochastic hillclimbing shows
essentially the same Gray-versus-binary behavior.

The remainder of this paper is organized as follows. In Section 2 we explain integer, binary and Gray
neighborhoods and illustrate with a specific example how a function may possess different local optima in
different neighborhoods. Section 3 describes the Markov model, and Section 4 explains the metric used for
comparison — the expected first passage time to optimality. Results of genetic algorithm performance with
the two encodings are presented in Section 5. Section 6 argues that alongside the choice of representations,
the right choice of genetic operators is also important for any practical application. In Section 7 a Markov
model is developed for stochastic hillclimbing and relative performance results are presented for Gray and
binary. Section 8 provides a summary and some concluding remarks.

2 Local optima

In any binary representation, the neighbors of a given string are those with Hamming distance one. In
the integer representation, the neighbors are those integers immediately greater and smaller. Thus, an
L-bit string has exactly L neighbors in any binary representation and two such neighbors in the integer
representation. A local optimum in a discrete search space is a point whose fitness is better than those of all
of its neighbors.

It is possible for a function to have different numbers of local optima under different neighborhoods
(i.e., different representations). The number of local optima of a fitness landscape is also refereed to as its
modality.

As an example, let us consider a discrete function of a single variable, F (x), where the independent
variable x can have a total of eight possible values. The eight x values can, without loss of generality, be
mapped to the eight integers 0, 1, . . ., 7. In the integer neighborhood, integer j has exactly two neighbors:
j − 1 and j + 1. We consider a wrapping neighborhood, that is, x = 7 has neighbors x = 6 and x = 0, and
x = 0 has neighbors x = 1 and x = 7. Function F is said to have a local optimum at x = j if F (j) is better
than both F (j − 1) and F (j + 1). It is easy to see that in the integer neighborhood, the number of local
optima of F (x) in the above example can be 1, 2, 3 or 4.

In the Gray representation, the eight strings are 000, 001, 011, 010, 110, 111, 101, 100. Unlike the integer
coding, each point in the Gray coding has exactly three neighbors. For example, the string 110 has 010, 111
and 100 as its neighbors. The binary encoding also induces three neighbors, but in general both the number
and the relative locations of the local optima of a given function are different for integer, Gray and binary
neighborhoods. For example, the function in Table 1 has 2, 1, and 3 local minima in the integer, Gray, and
binary representations, respectively (F (x) is an arbitrary function).

3 The Markov model

Markov chains have a long history of being used in the analysis of evolutionary algorithms (e.g., [6, 10, 11,
21, 16, 5, 20, 3, 18]). In the Markov model used here each population configuration represents a state. Let
N and L represent, respectively, the population size and the string length. The number of occurrences of
each of the 2L strings in a given state is given by state(i) for i ∈ S where S = {0, 1, . . . , 2L − 1}. Let s

x F (x)
Integer Gray Binary

0 000 000 20
1 001 001 0
2 011 010 10
3 010 011 40
4 110 100 60
5 111 101 50
6 101 110 70
7 100 111 30

Local minima
Integer Gray Binary

0 at x = 1
50 at x = 5 0 at x = 001

0 at x = 001
10 at x = 010
30 at x = 111

Table 1: A function may have different numbers of local minima in integer, Gray and binary neighborhoods.

represent the state space of the genetic algorithm. Then the size of the state space is given by ([16])

|s| =
(
N + 2L − 1

N

)
.

Given a particular state (state), fitness-proportionate selection [9] selects a particular string (str) with prob-
ability

Psel(str|state) =
F (str) · state(str)∑
j∈S F (j) · state(j)

,

where F represents the fitness function. In the present model, two parent strings are selected (using propor-
tional selection with replacement), crossed with probability of crossover pc, and two children are produced
by a head-tail swap of the parents. Finally, one of the two children is randomly chosen to go to the next
geneartion. Thus the probability of creating a particular string, str, from a particular state, state, by the
application of selection and crossover is given by

Psel−cross(str|state) = pc ×
∑

str1, str2 ∈ S
str1 ≤ str2

Psel(str1|state)Psel(str2|state)×

1
L− 1

L−1∑
cutpoint=1

Generate(str1, str2, str, cutpoint) +

(1− pc)Psel(str|state)

where the function Generate(str1, str2, str, cutpoint) returns 1 or 0 depending on whether or not the string
str can be generated by crossing strings str1 and str2 at the cross-site denoted by cutpoint. Bit-wise
mutation (with mutation probability pm) changes a string, str1 to another, str2 with probability

Pmut(str2|str1) = pH(str1,str2)
m × (1− pm)L−H(str1,str2)

where H(i, j) is the Hamming distance between strings i and j. Therefore the probability that a particular
string, str, is obtained from a particular state, state, by the application of selection, crossover and mutation
is given by

Psel−cross−mut(str|state) =
∑
j∈S

Pmut(str|j) · Psel−cross(j|state).

The transition from one state, state1, to another, state2, in a generational, non-elitist, simple genetic algo-
rithm is governed by a multinomial distribution, and the transition probability is given by

P (state2|state1) =
N !∏

str∈S state2(str)!

∏
str∈S

(Psel−cross−mut(str|state1))state2(str). (1)

For a nonzero pm, the Markov chain is irreducible, that is, every state can be reached from every other
state (all the entries in the transition probability matrix are strictly positive). In addition, the chain is regular
(that is, ergodic with no cycles). By standard Markov chain theory it can be shown that the asymptotic
transition probability distribution possesses a limit — the stationary distribution — and is independent of
the starting state. Thus for the three-operator genetic algorithm, lim t→∞P(t) has all rows identical and
no element in a row is zero.

4 Expected first passage time to convergence

We fill the
(
N + 2L − 1

N

)
×
(
N + 2L − 1

N

)
transition probability matrix with probabilities obtained by

using equation 1. We compare the performances of binary and Gray encodings using the following metric:
the expected first passage time to a state that contains at least one copy (instance) of the global optimum.
Clearly, the lower this value, the better.

We denote by p
(t)
ij the probability of transition from state i to state j in t steps. Let f (t)

ij stand for the
probability that in a genetic algorithm starting from state i the first entry to state j occurs at the t-th step:

P (Tij = t) = fij ,

where T is a random variable representing the first passage time. We put f (0)
ij = 0 for i 6= j, and f

(0)
jj = 1.

Then f
(1)
ij = p

(1)
ij = pij and

p
(t)
ij =

t∑
m=1

f
(m)
ij p

(t−m)
jj

where p(0)
jj = 1, and p

(0)
ij = 0 for i 6= j. We can now get the f ’s recursively:

f
(t)
ij = p

(t)
ij −

t−1∑
m=1

f
(m)
ij p

(t−m)
jj

For a genetic algorithm with nonzero pm, the {f (t)
ij } for any given pair of states (i, j) is a true probability

distribution, that is,
∞∑
t=1

f
(t)
ij = 1.

The mean (expected) first passage time to state j, starting from state i, is then given by

E(Tij) =
∞∑
t=1

t · f (t)
ij .

The mean first passage time can be calculated by using the iterates of the transition probability matrix
P. However, in this paper we use a different approach [15].

Let sg represent the set of states containing at least one copy of the global optimum. Let h and k be
two states such that k ∈ sg, and h ∈ s\sg. To study what happens when, given an initial state h, the
genetic algorithm hits the state k for the first time, we can ”stop” the process as soon as it reaches state
k. We can accomplish this ”stopping” by making k an absorbing state. In fact, we can go further and
make each global-optimum-containing state an absorbing state. Finally, since we are interested in finding
at least one copy of the global optimum, the absorbing states thus created can all be lumped into a single
absorbing state, making our task easier. The modified transition probability matrix, P ′, then has exactly
one absorbing state and the other states are transient. Let Q be the matrix obtained by truncating P ′ to
include only the non-absorbing states. (As an example, for L = 3 and N = 2, P is a 36 × 36 matrix, and the
dimensions of Q are 28 × 28.) Then I − Q gives the ”fundamental matrix” (see Appendix), and the mean
time to absorption, starting from a given transient state, is given by the row-sum of the corresponding row

of the matrix (I − Q)−1 (the number of rows in (I − Q)−1 is equal to the number of non-absorbing states
in P ′).

Assuming a uniform random (0, 1) distribution for generating the bits in the initial generation (t = 0)
of the genetic algorithm, each of the |s| states is equally likely to represent the initial population, and this
probability is 1

|s| . The expected value of the expected first passage time to the global optimum is then given
by

E =
1
|s|

|s|∑
i=1

E(Ti) (2)

where E denotes expectation, and Ti is a random variable for the first passage time, given the start state i.
For an absorbing state i, P (Ti = 0) is unity.

The expected value E is computed for both binary and Gray encoding and is used as the basis of
comparison in the remainder of this paper.

5 Results

There are infinitely many functions defined over L bits, differing by function evaluations and their permu-
tations. To have a finite case, we restrict function evaluations to the range 1 to 2L and we permute these
2L distinct values. Thus, for L = 3, we have a total of (23)! = 40,320 different functions, corresponding to
as many permutations. For example, L = 3 gives 23 = 8 function evaluations: 1,2, . . . , 8, and for these 8
evaluations, one possible permutation is {F (0) = 1, F (1) = 2, . . . , F (7) = 8}.

Without loss of generality, we consider a minimization problem. For each of these 40,320 functions, we
count the number of optima in each of the three representations. In Table 2 we show these counts in four
categories, corresponding to 1, 2, 3 and 4 local minima in the integer representation. For instance, out of
a total of 40,320 functions, 2176 have four minima each in the integer representation. Among these 2176
functions, 32 have two minima, 704 have three, and 1440 have four each in the Gray representation. Again,
the same 2176 functions can be grouped into two classes: 1408 functions having one minimum each and
768 with two minima each in the binary representation. Therefore, as expected, a given function can have
different numbers of local minima under different representations. However, the total number of functions
with a given number of minima is the same for Gray and binary representations (see Table 3). By covering
all (2L)! functions, we have included all possible situations. For example, over 3 bits, there will always be
exactly 1232 functions with 2 local minima in the integer neighborhood, 2 in the Gray neighborhood and 3
in binary, regardless of the particular fitness values assigned to the individual strings.

Performance comparisons for L = 3, N = 2, pc = 0.8, pm = 0.05 are shown in Table 4 where the expected
first passage times (equation 2) have been used as the basis of comparison. An encoding is better if it has a
smaller expected first passage time to find the global optimum. Note that no GA runs (experiments) were
performed; we obtained the first passage times theoretically, via the Markov chain calculations of Sections 3
and 4. For presentation, the functions are divided into 26 equivalence groups based on the number of local
minima in the three neighborhoods.

As we observe from Table 4, both representations produce approximately the same number of winners:
19296 for Gray and 21024 for binary. This reiterates the known fact [23] that no representation should be
superior for all classes of problems. The small discrepancy may be attributed to the choice of parameters.
The pc, pm values used in Table 4 are ”standard”. To evaluate the effect of operator probabilities, we
re-calculated the first passage times for vastly different probabilities. Table 5 shows some representative
cases. We can see that while the relative performance is affected by the parameter values, the differences
are not very significant even for the extreme crossover/mutation rates. The results are quite stable for more
reasonable variations in the standard mutation/crossover rates (as we observed separately). The results in
Table 4 are dependent on the (raw) fitnesses because of our use of fitness-proportionate selction in Section
3. Use of a rank-based selection would eliminate that dependence.

Overall, the results show that contrary to popular belief, it is not necessarily true that fewer local optima
make the task easier for the genetic algorithm. (The 9th row in Table 4, showing 1232 functions with 2,
2 and 3 local minima in integer, Gray and binary representations, respectively, is particularly interesting:

Integer Gray Binary
#minima #functions #minima #functions #minima #functions

1 512 1 512
1
2
3

64
384
64

2 14592
1
2

6144
8448

1
2
3
4

3056
10032
1360
144

3 23040
1
2
3

1984
16000
5056

1
2
3
4

4112
13296
4336
1296

4 2176
2
3
4

32
704

1440

1
2

1408
768

Total 40320 40320 40320

Table 2: The number of local minima in all possible functions defined over three bits. The functions are
divided into 4 categories corresponding to 1,2,3 or 4 local minima in the integer neighborhood. See also
Table 3.

#minima #functions in different neighborhoods
Integer Gray Binary

1 512 8640 8640
2 14592 24480 24480
3 23040 5760 5760
4 2176 1440 1440

Total 40320 40320 40320

Table 3: The total number of functions with 1,2,3 or 4 local minima under the three neighborhoods. L = 3.

No. of Functions No. of Minima in Different Neighborhoods No. of Times Coding Better
Integer Gray Binary Gray Binary

64 1 1 1 40 24
384 1 1 2 380 4
64 1 1 3 64 0
768 2 1 1 324 444
5248 2 1 2 5032 216
128 2 1 3 128 0
2288 2 2 1 52 2236
4784 2 2 2 1764 3020
1232 2 2 3 532 700
144 2 2 4 84 60
224 3 1 1 116 108
1568 3 1 2 1500 68
192 3 1 3 192 0
2016 3 2 1 276 1740
9024 3 2 2 5132 3892
3664 3 2 3 2332 1332
1296 3 2 4 924 372
1872 3 3 1 0 1872
2704 3 3 2 332 2372
480 3 3 3 24 456
16 4 2 1 0 16
16 4 2 2 8 8
432 4 3 1 0 432
272 4 3 2 60 212
960 4 4 1 0 960
480 4 4 2 0 480

Table 4: Performance comparison of Binary and Gray coding (L = 3, N=2, pc = 0.8, pm = 0.05). Gray
wins a total of 19296 times, binary wins 21024 times.

No. of Functions No. of Minima Parameters No. of Times Winner
Integer Gray Binary pc pm Gray Binary

64 1 1 3 0.8 0.05 64 0
0.0 0.1 60 4

1232 2 2 3 0.8 0.05 532 700
0.0 0.2 500 732
1.0 0.001 640 592

144 2 2 4 0.8 0.05 84 60
0.0 0.2 68 76
1.0 0.001 84 60

272 4 3 2 0.8 0.05 60 212
0.0 0.1 56 216
1.0 0.0001 64 208

Table 5: Performance comparison of Binary and Gray coding (different crossover and mutation probabilities
have been used). L = 3, N = 2.

binary is the winner in more that half of the 1232 functions.) This collaborates Horn and Goldberg [14],
who have shown that some maximally multimodal functions can be easier than unimodal functions for the
genetic algorithm. In [17, 22] it was argued that Gray would be better than binary for functions with fewer
local optima in the Gray Hamming space than in the binary Hamming space. From the above results we see
that this is not always true. In Section 7, similar results are obtained for Gray and binary encoding in the
case of stochastic hillclimbing.

6 Another look at the choice of representation

We considered two different bit-string representations, while assuming exactly the same mutation and
crossover operators. However, in practice one may apply different operators, possibly representation- or
domain-specific. Thus, in general, the usefulness of a given representation cannot be assessed without taking
the operators into account. To prove this point, we show that equivalent operators can always be constructed
such that the Gray-coded GA runs exactly the same as the binary-coded GA. (Note that this will not be
the case for two arbitrary representations if their representative powers are different, for example, if one
representation cannot map some solution points).

Consider GAb (based on the standard binary encoding) along with two known operators: mutation mutb
and crossover crossb. Given some operator probabilities, one may now execute GAb, initialized with some
population. Now consider GAG (Gray-based), with two unknown operators mutG and crossG, but the same
probabilities of application as those of mutb and crossb, respectively. The algorithms do not differ except
for the representation and the operators. For the sake of presentation, we assume the generational model
and an integer parameter optimization problem.

Suppose that the initialization routine generates random integer values in the domain, and then encodes
them in a given representation. Because of this, GAb will be initialized with exactly the same population as
GAG, at the phenotype level, and thus phenotype(POP 0

b) = phenotype(POP 0
G). However, the genotypes of

POP 0
b and POP 0

G are not the same. Now, any rank-based or fitness-based selection will select exactly the
same phenotypes in the two algorithms.

Define chrom : mi
b and chrom : mi

G to be the chromosomes (genotypes) corresponding to a particular
fitness (phenotype) m in GAb and GAG, respectively, at generation i. (Note that phenotype(chrom : mi

G) =
phenotype(chrom : mi

b) = m.) Define, for either representation, mut(chrom : m) to be the mutation off-
spring of the chromosome chrom : m, and cross(chrom : m, chrom : n) to be the pair of crossover offspring.
If we could define mutG and crossG so that

phenotype(mutb(chrom : mb)) = phenotype(mutG(chrom : mG)) and
phenotype(crossb(chrom : mb, chrom : nb)) = phenotype(crossG(chrom : mG, chrom : nG)),

then obviously all subsequent populations would also be phenotypically the same, yielding exactly the same
runs. Therefore, if such mutation and crossover can be defined, the representation will become transparent
to the application.

Can we define such operators in GAG? Yes indeed – we illustrate that with actual construction. Take
the chromosome chrom : m0

G selected from the initial population for mutation in GAG. Remember that
according to the initialization routine, phenotype(chrom : m0

G) = phenotype(chrom : m0
b). Now define mutG

as follows:

1. Transform chrom : m0
G to its equivalent standard binary representation (chrom : m0

G)b, according to
the procedure Gray-to-Binary (Section 1). Because the phenotypes were the same, (chrom : m0

G)b =
chrom : m0

b .

2. Generate mutation offspring of the above chromosome using the known binary mutation mutb. Of
course, mutb((chrom : m0

G)b) must be the same as mutb(chrom : m0
b). Let mutb change the phenotype

of the string chrom : m0
b from m to q and the genotype from chrom : m0

b to chrom : q1
b . Therefore,

mutb((chrom : m0
G)b) must equal chrom : q1

b .

3. Apply the reverse transformation Binary-to-Gray to express mutb((chrom : m0
G)b) = chrom : q1

b in the
Gray encoding as chrom : q1

G.

Clearly, phenotype(chrom : q1
b) = phenotype(chrom : q1

G) (and this value is q). In other words, mutG (as
defined above) has produced a string with the same phenotype as that of the string produced by mutb.

The same can be argued for crossover — we can transform both chromosomes from GAG into the binary
representation, apply crossb to generate two offspring, and then transform these offspring back to the Gray
encoding. Again, the resulting offspring would be the same in both algorithms at the phenotype level,
resulting in the same evaluations. Thus we have phenotype(POP 1

b) = phenotype(POP 1
G).

Because the selection is either fitness-based or rank-based, any pair of corresponding (i.e., same-phenotype)
chromosomes in both representations will either undergo the same operations in the next generation or both
die. Therefore, phenotype(POP 2

b) = phenotype(POP 2
G), and finally phenotype(POPFinalb) = phenotype(POPFinalG).

In other words, both GAb and GAG produce the same final populations as far as the fitness values are con-
cerned, thus producing indistinguishable results.

Of course, one may argue that no one would use such carefully crafted operators. This is true for the
two simple representations considered here, but is not true for many domain-rich representations in which
practitioners often use complex mutation and crossover operators. We only intended to show that for any
practical application one must take the operators into account, otherwise representation choices based on
presumed superiority are of little importance.

7 Stochastic hillclimbing

The following version of stochastic hillclimbing [1] is used in this paper (the problem considered is one of
minimization):

1. Select a point — the current point, xc — at random and evaluate it. Let the fitness be fc.

2. Select an adjacent point, xa, at random ane evaluate it. Let fa be its fitness.

3. Accept the adjacent point as the current point (that is, xc ← xa with probability

1

1 + e
fa−fc
T

where T is a parameter (the temperature) of the algorithm.

4. If a predetermined termination condition is not satisfied, go to step 2.

In stochastic hillclimbing the search begins with a single point and proceeds from one point (state) to
another. For an L-bit problem the search space consists of 2L points (states). At any single step, the
process can move from a given point to itself or to any one of the L adjacent points (an adjacent point is a
unit-Hamming-distance neighbor). A move from a current state fi to a next (adjacent) state fj takes place
with probability

1
L
· 1

1 + e(fj−fi)/T
.

The process stays in the same state fi with probability

1− 1
L

∑
k∈Ai

1
1 + e(fk−fi)/T

where Ai is the set of states that are adjacent to fi, |Ai| = L.
Therefore the entries of the 2L × 2L transition probability matrix of the Markov chain for stochastic

hillclimbing are given by

pij =


1
L ·

1

1+e(fj−fi)/T
for j ∈ Ai

1− 1
L

∑
k∈Ai

1
1+e(fk−fi)/T

for i = j

0 otherwise
(3)

In this case, there is exactly one optimal state (and that state corresponds to the globally best string).
When we make that state into an absorbing state, the truncated matrix of size (2L−1)× (2L−1) represents

No. of Functions No. of Minima in Different Neighborhoods T No. of Times Coding Better
Integer Gray Binary Gray Binary

384 1 1 2 10 356 28
5 372 12

5248 2 1 2 10 4560 688
20 4488 760

2288 2 2 1 10 308 1980
15 336 1952
12 328 1960

1232 2 2 3 0.9 640 592
0.1 696 536
0.5 656 576
0.8 656 576
1.0 652 580
5.0 668 564

1568 3 1 2 10 1308 260
5 1368 200
15 1284 284
20 1268 300

2016 3 2 1 10 548 1468
12 552 1464
15 560 1456

3664 3 2 3 10 2392 1272
15 2368 1296

2704 3 3 2 0.2 720 1984
0.5 680 2024

272 4 3 2 0.5 112 160
1.0 76 196

Table 6: Performance comparison of Binary and Gray coding in stochastic hillclimbing. L = 3.

the Q matrix referred to earlier. We can now obtain the mean first passage times to optimality from row-
sums of the matrix (I−Q)−1. The fitnesses used are as in the previous sections. Some representative results
for L = 3 are shown in Table 6. As in the case of the genetic algorithm, fewer minima do not necessarily
make the search easy for hillclimbing. Also, the relative performance is seen to be affected by the algorithm
parameter (T).

8 Conclusions

This paper has shed some light on the Gray-versus-binary debate in genetic algorithms. A finite-population
genetic algorithm has been modeled using well-known techniques from Markov chain theory and the relative
performance of Gray-coded and binary-coded genetic algorithms studied using the expected first passage
time to optimality as the figure of merit. Over all possible functions there is not much difference between
the two representations, but fewer local optima do not necessarily make the task easier for Gray coding. The
present model is complete, that is, all the three operators – selection, crossover and mutation – have been
taken into account, and it is exact, that is, it does not need any approximation or assumption. The results
were validated for different probabilities of mutation and crossover.

A Markov model for stocahstic hillclimbing was also developed and performance comparison of Gray and
binary coding investigated, using the same criterion of how quickly the global optimum is found out. The
results are similar to those obtained for the genetic algorithm.

A limitation of the present approach is that it allows us to study all possible functions defined on up to 3
bits. An exhaustive enumeration of all possible functions on a large number of bits and calculating the first

passage times is computationally prohibitive (for 4 bits, there are 16! ≈ 2× 1013 possible functions).

Appendix: Some definitions and results from Markov chain theory

We collect here some definitions and results. Proofs can be found in Kemeny and Snell (1960).
DEFINITION A.1: An ergodic set of states is a set in which every state can be reached from every other

state, and which, once entered, cannot be left.
DEFINITION A.2: An ergodic state is an element of an ergodic set.
DEFINITION A.3: A transient set of states is a set in which every state can be reached from every other

state, and which can be left.
DEFINITION A.4: A transient state is an element of a transient set.
DEFINITION A.5: An absorbing state is a state which once entered is never left.
DEFINITION A.6: The period of any state i is defined as the greatest common divisor of all integers k

(≥ 1) for which p
(k)
ii > 0. When this greatest common divisor is 1, the state i is aperiodic.

DEFINITION A.7: An ergodic chain is one whose states form a single ergodic set.
DEFINITION A.8: A cyclic chain is an ergodic chain in which each state can only be entered at certain

periodic intervals.
DEFINITION A.9: A regular chain is an ergodic chain that is not cyclic.
Let the Markov chain have s transient states, and r − s ergodic states. Then the canonical form of the

transition probability matrix becomes

P =
(
S O
R Q

)
The region O consists of zeros. The (r − s)x(r − s) matrix S concerns the process after it has reached
an ergodic set. The sxs submatrix Q corresponds to the transition probabilities only among the transient
states. R is an sx(r − s) matrix whose elements are the probabilities of transition from the transient states
to the ergodic states. It can be shown that as k →∞ , Qk tend to O (zero matrix). For an absorbing chain,
S is an (r − s)x(r − s) identity matrix, I(r−s)x(r−s).

DEFINITION A.10: For an absorbing Markov chain, the fundamental matrix is defined to be M ≡
(I − Q)−1.

The fundamental matrix plays a useful role in absorbing Markov chain theory. The existence of the
inverse of the matrix (I −Q) is established by Theorem A.1 which we state without proof.

THEOREM A.1: For an absorbing Markov chain partitioned as shown above, the inverse (I − Q)−1

exists, and

(I − Q)−1 = 1 +Q+Q2 + · · · =
∞∑
k=0

Qk.

THEOREM A.2: The mean times to absorption (corresponding to different start states) are given by the
entries of Mξ, and the variances by (2M− I)Mξ − (Mξ)sq, where M is the fundamental matrix, ξ is an
s-component column vector with all entries 1 and Asq represents the matrix obtained from A by squaring
each entry.

Acknowledgments

The first author was supported by a UMSL Research Award, 2002.

References

[1] Ackley, D. H. (1997): A Connectionist Machine for Genetic Hillclimbing, Boston, MA: Kluwer Academic
Publishers.

[2] Caruana, R.A. and Schaffer, J.D. (1988): Representation and hidden bias: Gray vs. binary coding for
genetic algorithms, Proc. 5th Internat. Conf. on Machine Learning, pp. 153-161, Los Altos: CA, Morgan
Kaufmann.

[3] Chakraborty, U.K., Deb, K. and Chakraborty, M. (1996): Analysis of selection algorithms: A Markov
chain approach. Evolutionary Computation 4(2), 133-167.

[4] Chakraborty, U.K., Dastidar, D.G. (1991): Chromosomal encoding in genetic adaptive search, Proc.
Int’l Conf. on Signals, Data and Systems, AMSE, Vol. 2, pp. 191-195.

[5] Davis, T.E. and Principe, J.C. (1993). A Markov chain framework for the simple genetic algorithm.
Evolutionary Computation, 1, 269-288.

[6] De Jong, K.A. (1975). An analysis of the behavior of a class of genetic adaptive systems. Ph.D. Thesis,
University of Michigan, Ann Arbor, MI.

[7] Eshelman, L.J. (1991): The CHC adaptive search algorithm, Foundations of Genetic Algorithms - I,
Morgan Kaufmann.

[8] Gilbert, E. N. ”Gray Codes and Paths on the n-Cube” Bell System Tech. J. 37, 815-826, 1958.

[9] Goldberg, D.E. (1989): Genetic Algorithms in Search, Optimization, and Machine Learning, Boston:
Addison-Wesley.

[10] Goldberg, D.E. and Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms. In J.J. Grefen-
stette (Ed.), Proc. 2nd International Conf. on Genetic Algorithms (pp. 1-8). Hillsdale, NJ: Lawrence
Erlbaum.

[11] Eiben, A. E., Aarts E.H.L. and Van Hee, K.M. (1991). Global convergence of genetic algorithms: a
Markov chain analysis, In H.-P. Schwefel and R. Maenner (Eds.), Parallel Problem Solving from Nature
(pp. 4-12). Berlin: Springer-Verlag.

[12] Haupt, R.L. and Haupt, S.E. (1998) Practical Genetic Algorithms, New York: Wiley.

[13] Hollstein, R.B. (1971): Artificial genetic adaptation in computer control systems, PhD Thesis, Univ. of
Michigan.

[14] Horn, J., Goldberg,D.E., Genetic algorithm difficulty and the modality of fitness landscapes, FOGA-3,
1994, 243-269.

[15] Kemeny, J.G. and Snell, J.L. (1960) Finite Markov Chains, Van Nostrand, Princeton.

[16] Nix. A.E. and Vose, M.D. (1992). Modeling genetic algorithms with Markov chains. Annals of Mathe-
matics and Artificial Intelligence 5, 79-88.

[17] Rana, S.B., Whitley, L.D. (1997): Bit representations with a twist. Proc. 7th ICGA, pp. 188-195.

[18] Rudolph, G., Finite Markov Chain Results in Evolutionary Computation: A Tour d’Horizon, Funda-
menta Informaticae 35(1-4):67-89, 1998.

[19] Schaffer, J.D. et al. A study of control parameters affecting online performance of genetic algorithms for
function optimization, Proc. 3rd ICGA, 1989 (Morgan Kaufmann).

[20] Suzuki, J. (1993). A Markov chain analysis on a genetic algorithm. In S. Forrest (Ed.), Proc. Fifth Int’l
Conf. on Genetic Algorithms (pp. 146-153). San Mateo, CA: Morgan Kaufmann.

[21] Vose, M.D. (1993). Modeling simple genetic algorithms. In L.D. Whitley (Ed.), Foundations of Genetic
Algorithms - 2 (pp. 63-74). San Mateo, CA: Morgan Kaufmann.

[22] Whitley, D (1999): A free lunch proof for Gray versus binary encodings, Proc. Genetic and Evolutionary
Computation (GECCO-1999), pp. 726-733.

[23] Wolpert, D.H. and MacReady, W.G. (1997): No free lunch theorems for optimization, IEEE Transac-
tions on Evolutionary Computation 1(1), pp. 67-82.

